REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information to estimated to owneys I hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments reporting this burden estimate or any other super of it little collection of information, including suggestations for reducing this burden to Washington Headquarters Services, Officiants for information Operations and Reports, 1215 Jetterson Data Higher op, 2016 1234, Artington, VA 22102, 2010 to the Office of Namegement and Eudgel, Paperwark Production Project 007-040 1861, Washington, DC 202103.

1. AGENCY USE ONLY (Leave blank)	2 REPORT DATE 7 November 2001		a report type and dates covered Final (1999–2001)	
4 TITLE AND SLETTILE			S. FUNDING NUMBERS	
Improved paramerizations of triad and quartet interactions in spectral wind-wave models			N00014-00-0018	
6 AUTHOR(S)				
Steve Elgar				
7. PERFORMING O RGANIZATION NAMES (S	i) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
Woods Hole Oceanogra	phic Institution		HEPORI NUMBER	
Woods Hoel, MA 02543				
R SPONSORING / MONITORING AGENCY N	IAM ES(S) AND ADD RESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
Office of Naval Research			ACCION NEW ONLINE	
800 North Quincy				
Arlington, VA 22217				
11 SUPPLEMENTARY NOTES				

a DISTRIBUTION/AVAILABILIT

20011113 073

12. DISTRIBUTION CODE

Approved for public release

13 ABSTRACT (Maximum 200 words)

This study was to improve paramterizations for 3 and 4 wave nonlinear interactions in shallow water. Models for wave shoaling were improved and tested. The improved models have increased skill in predicting the observed evolution of wave breaking and evolution across the shoaling region and surf zone. In addition, during this study it was discovered that there is a large increase in directional spreading of waves as they propagate across the surf zone. Also, this study showed that nonlinear interactions transfer energy from swell and sea waves to higher frequency motions, where presumably dissipation takes place. Consequently, wave breaking in the surf zone includes a nonlinear energy transfer from lower–frequency sea and swell to higher–frequency motions, followed by dissipation of the higher frequency motions.

14 SUBJECT TERMS wave evolution, wave me	15. NUMBER OF PAGES 1 16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. UMITATIONO FABSTRACT unlimited

Signified Form 200 (Fig., 2-8 Prescribed by W&S Sad Laste 18

Final Technical Report for the Project:

Improved parameterizations of triad and quartet interactions in spectral wind-wave models N00014-00-1-0018

Results from this project are described in the following publications:

Herbers, T.H.C., Steve Elgar, and R.T. Guza, 1999. Directional spreading of waves in the nearshore, *J. Geophysical Research* **104**, 7683-7693.

Herbers, T.H.C., N.R. Russnogle, and Steve Elgar, 2000. Spectral energy balance of breaking waves within the surf zone, *J. Physical Oceanography* **30**, 2723-2737.

Herbers, T.H.C., Steve Elgar, N.A. Sarap, and R.T. Guza, Dispersion Properties of Surface Gravity Waves in Shallow Water, *J. Physical Oceanography*, in press.